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A user-oriented discussion of the determination of the parameters A, and A, in the 
exponential model exp(A, + A,x) is presented in the context of four linear least-squares 
techniques. Among these four, the best method to use is found to be dependent on severa! 
criteria, of which the most important are: (1) the objective of the tit, (2) the range of data, and 
(3) the type of error contained in the data. Given the optimal method according to these 
criteria, the improvement in the estimated values of A, and A,, obtained by extending either 
the range of data or the density of data, is also determined. 

1. INTRODUCTIONS 

The exponential model, z(x) = exp(A I + A,x), is frequently encountered in the 
analysis of experimental data. The model, whatever its application, requires that the 
values of A, and A, be estimated according to some subjectively chosen criteria using 
an observed set of experimental data. Most commonly, the choice made is to 
minimize the sum of the squared residuals. For the exponential model, this results in 
a nonlinear treatment of the data. While numerical techniques are now widely 
available to perform these nonlinear computations rather routinely, often the 
linearized model, y = In z = A 1 + A 2x, is used because of its greater simplicity and 
convenience. In this note, attention is given to the linearized model, and a comparisons 
is made among four possible methods of determining values for A, and A,. E 
is placed on a special problem of the linearized least-squares model. 

In general, there are many fine discussions readily available describing the least- 
squared-error technique of fitting a smooth curve through experimental data 1 I-61. In 
the case of the exponential model, though, the use of a logarithm in the data analysis 
requEres supplementary discussion. For example, it is well known [I, p* 252fF; 
2, p. 18Qff; 3, p. 673ff] that the process of linearization effectively changes the weighs 
factors of the observed data. Suppose [(xxi, zi), i = 1, N] is a set of data where x is the 
independent variable and z is the dependent variable. Then, the linearization effec- 
tively yields a greater weight for the smaller values of z. To compensate for this 
effect, a modified weight factor is commonly recommended according to the 
reasoning that if the weight factor wi for the ith point in the data set is inversely 
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proportional to the variance of the value zi, then the modified weight wf should be 
inversely proportional to the variance of In zi. Hence, WI - wizi. What is not widely 
realized is that this procedure can affect, seriously and deleteriously, the estimated 
values of A I and A z in some circumstances. 

The difficulty is that there are two distinguishable objectives involved in the fitting 
of data by models, and standard discussions of the least-squares method address only 
one of these. For the exponential model, this is: 

(I) Best smooth curve: Through the given data, obtain an exponential curve 
that most closely represents the trend of the observed data. 

It has already been noted that the customary measure of the goodness of a fit to 
data is the value of the sum of the squared residuals, 

02= (N-2)-‘C (Zi-exp(A, +A,Xi))‘. (1) 

An alternative objective can also be stated: 
(II) Best parameter values: On the basis of the observed data, obtain values for 

A, and A 2 that deviate from their true values by as little as possible. 
A dimensionless measure of the goodness of a pair of values (A r, A J can be given 

by the squared relative error, 

where ((x1, CLJ is the corresponding pair of ideal parameter values. 
It might be thought, at first, that these two objectives are equivalent, but they are 

not. The first objective is applicable when a smooth curve is desired for the purpose 
of interpolation. This is the case to which theoretical statistics has devoted much 
effort, and in this case, the actual values of the parameters A, and A, may have no 
significance. The second objective is applicable when the parameters are physically 
meaningful, for example, as transition rates or bandgap energies. 

It is quite easy to imagine a case in which the two objectives represent dfferent 
interests. Suppose that a set of data [xi, zi] is given with the uncertainty of any z 
being, e.g., k 10 %. The independent variable x is assumed to have no error. Suppose 
also that the values of z range over several orders of magnitude such that 
o<q<s;+, and 6: << Sk, where Ji is the estimated error at the ith point of the data. 
In this case, the equal percentage uncertainty of all the data implies that all points 
should have an equal effect on the estimated values of the parameters. yet, per force, 
8: must influence those values much more strongly than ST, in the prescription of 
objective I. In other words, it is conceivable that the relative errors at the smaller, 
though equally good, values of z could be exaggerated compared to the relative errors 
at the larger, but not better, values of z. Necessarily, the values of the parameters 
suffer an error from this procedure. 

To guard against an unwarranted bias in favor of the values of z with the larger 
magnitudes, it is sometimes thought that the data should be weighted so that, effec- 
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tively, it is the relative squared error that is minimized. In this case, while 6: <( 8;, 
the relative values (6Jzi)* are comparable for all points in the data. For the present 
problem, it can be seen in Section 3 that this procedure has only limited value. For 
the sake of greater generality, this alternative is considered here, as well as the use of 
the modified weight factor, w(. 

Specifically, consideration is given to a choice among four linearized versions of 
Eq. (I) which can be minimized with respect to A 1 and A, by the simpler linear least- 
squares methods. These are: 

St=Cw,(lnzi-A,-A,xJ*, 
I 

Sk =z] wizi(ln zi -A, -A2xi)‘, 

Sfj~ = C Wi(l - (A, + A,x,),/~II Zi)‘y 

S& = T wizi(l - (A, + A,x,)/ln zi)25 

(4) 

where the subscripted letters are intended to suggest the meanings U = u~modi~ed, 
M = modified, and R = relative. The methods denoted by the letters U and M are the 
most widely used procedures. Method U, with Wi = 1, is available on many pocket 
calculators and is often used because of this convenience. Table 1 provides an 
illustration of the differences that result from the different procedures. (Details of the 
computation are deferred until Section 2.) In this example, method U yields the best 
values of the parameters as judged by objective II, but method M yields the best 
smooth curve through the data as judged by objective I. In general, it can be seen that 
the type of error in the data, the method of analysis, and the objective of the analysis 
are all significant considerations. Further, the criteria of smallest standard error and 
best parameter values can be nonequivalent to a significant degree. Other examples in 
the form of Table 1 would show that the performances of the four methods yield 

TABLE 1 

A Simple Example of Variable’ Results in the Relative Performances of 
Four Least-Squares-Fitting Procedures for the Model S(x) = exp(A , + A *x)’ 

Method / % Err. A , j 1% Err.A,l 
Parametei 

ranking 
Standard 

error 
Stnd. err. 
ranking 

u 0.6 0.1 1 91 3 
n/r 17 3 4 66 1 

UR 8 0.4 3 123 4 
MR 6 0.6 2 82 2 

” For this example, A, = 1.0, A, = -0.1. A relative random error E is associated withf(x) such that. 
z = (1 + E)~(x) and I&/ & 0.25. Methods U, M, UR, MR are specified by Eqs. (3)-(6). 
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variable rankings, according to the type of error, the range of data, and the density of 
data. 

The observations on Table 1 indicate that the most that should be expected for the 
methods represented by Eqs. (3)-(6) is a statistical basis for selecting the appropriate 
method for a given problem. The most commonly followed procedure for laboratory 
work is to use an unweighted data set in which case the wi may all be set equal to 
unity in Eqs. (3~(6). Since any other nonequivalent choice for the wi requires a 
knowledge of the experimental details, only the case wi = 1, for all i, is considered in 
this note. In Sections 2 and 3, a discussion of the relative performance of the four 
methods, for each of the two objectives, under a variety of conditions, is presented. 
Based on these results, the improvement in the determined values of the parameters, 
that can be achieved by increasing the density or the range of data, is examined in 
Section 3. 

2. APPROACH 

The present determination of the relative performances of the least-squares methods 
represented by Eqs. (3~(6) follows from a simple pedestrian approach. It has already 
been noted that there are at least three important considerations: the objective, the 
method, and the nature of the error. In addition to these, it was noted that the range 
of the data and the magnitude of the errors must also be considered. All of these 
points can be examined statistically by analyzing a collection of simulated data sets. 
If the ideal parameters a, and a2 are known, then a set of data can be generated 
according to the equation 

Zi = (1 + Ei) exp(a, + Qxi), (7) 

where si is a computer-generated random number representing the relative error of the 
ith element of the data set. (The random-number generator used for this simulation 
produced a normally distributed error with a mean value of zero. The magnitude of 
the error was controlled by the choice of the variance of the normally distributed 
error.) The nature of the error can also be varied, and in this note, five types of error 
are examined. To be definite, let the data set be ordered such that, for ideal values, 
z1 <z, < ... < zN. With respect to this ordering, the types of error can be denoted as 
follows. 

(A) cr(si) = oO. All data points have comparable percentage error. 
(B) (s(E~) = o1 for i < N/2 and (T(E~) = o2 < pi for i >N/2. The data set is 

composed of two parts obtained under different experimental conditions. Each part is 
individually of type A. 

(C) Same as B except o2 > oi. 
(D) cr(si) > (T(E~+,). The percentage error decreases steadily with increasing z. 
(E) o(E~) < o(si+ ,). The percentage error increases steadily with increasing z. 
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For error type A, the optimal least-squares method can be anticipated the~ret~~a~~~~ 
When all (~(6~) are equal and the squared residuals are weighted by the r~~i~r~~~~ 
variances of the zi, the minimum variance estimation of the parameters is traduced 
by method U. Often the individual variances of the zi are not known ex~erirne~ta~~y~ 
and then a further estimate is made which, in practice, sets var (zif = 0: for all i. This 

is equivalent to setting ail wi = 1 as is done here. Consequently, to the extent that the 
second approximation can be applied, the optimal method for error type A shouid be 
method U. 

In all cases, the data were generated using Eq. (7) according to the f~~~~w~~~ 
scheme. The independent variable, x, was chosen to be equally spaced such that there 
were n points of data for each decade in the range of z-values. The ideai i~~e~e~d~~t 
variable, z, was chosen to cover the range lOwi - 10N-‘, where N is the number of 
decades in the range of z. The total number of points in a given data set was then the 
product nN. (As a practical note for computer computations, when other values of x 
are encountered, it could be desirable to scale the dependent variable to bring the 
data into a range equivalent to what was used here. This would be useful as a means 
of avoiding underflow, overflow, and extreme round-off errors in the corn~~ta~~~~~.~ 

The values of the ideal parameters a, and CL* were selected as follows. First, as a 
result of several trial cases, it was found that there was a quantitative variation in the 
results depending on the algebraic signs of the ~arameters~ Conseque~tly~ the four 
combinations (sgn 01~) sgn aI> = (-, +>, (+, -1, (--: -1, and (-I-, -4-j were mate 
separately. Second, it was then found that quantitative variations among widely 
varying pairs of values of (or, a~?) having the same (sgn czl, sgn CQ) were ~eg~~~ib~~~ 
Third, the quantitative variations among cases of different (sgn a,, sgn a,) did not 
produce qualitative differences except in the case of error type D in the range fve 
to seven decades of data. Consequently, the numerical values of the ideal para tess 
were selected to sample the ranges of values that can be expected in ~abo~~to~y 
applications. 

For example, one of the more extreme cases of parameter values occurs in the 
study of transient capacitance time constants versus reciprocal temperature for deep- 
level impurities in semiconductor materials. in this case, a, 2 -25 and a2 5 4.5 are 
typical values. A second example is the study of viscosity. Under t~m~erat~re or 
pressure variations, the viscosity of a liquid can be driven through one of the widest 
range of values of any property characterizing a material substance. ~iscosit~es of 
liquids can vary from about 1Qe3 to 1013P with the variation being r~~~bl~ 
exponential in either pressure or reciprocal temperature. The pressure variations are 
usually larger and have parameter values on the order of a1 > - 10 and 
a2 2 4 GPa-‘. 

From such observations, the kth values of 25 pairs of values were assigned as 
follows: 

c-3 +> a,(K) = - 25 + 2(K - 1)/3, a*(K) = 6.5 - O.l25(K -- a>, (as> 

(+7 -) a,(K) = 25 - 2(K - 1)/3, a*(K) = -6.5 -+- ~.125(~ - ig, (9) 



194 R. G. MUNRO 

C-Y -1 a,(K) = -2 - (K - 1)/3, a,(K) = -2 - (K - 1)/12, (10) 

(+, t-1 q(K) = 2 + (K - 1)/6, a@) = 2 + (K- 1)/12. (11) 

For given values of the ideal parameters and the independent variable X, Eq. (7) 
was used to generate the data for a simulated experiment. In each case, 100 
replications of the experiment were performed; i.e., 100 sets of random relative errors 
were generated. Thus, for each commbination of (sgn ai, sgn CQ), results were 
obtained for 2500 least-squares fits. The normally distributed random relative errors 
had a mean value of zero. The variance o*(s) was chosen to simulate the typical 
experimental situation in which the uncertainty in the data is not worse than about 
10 %. For the five error types A through E designated above, (A) a, = 0.1, (B) 
0, = 0.1, g2 = 0.025, (C) o1 = 0.025, o2 = 0.1, (D) (s(EJ = (N+ 1 -i) 0.1/N, (E) 
(s(EJ = 0. ii/N, where N = total number of data points and where the ordering of the 
ideal values of z was given above. 

3. NUMERICAL RESULTS 

All numerical computations were performed in a double-precision mode, and test 
calculations were made with all errors set equal to zero to observe the performance of 
the numerical routines under optimum conditions. The largest relative error obtained 
in these cases was about 2 X lo-l6 for either parameter. 

The two objectives were each examined with respect to the four methods of fitting 
and live error cases. For objective I, the best smooth curve through the data, the 
results were nearly unanimous. With only a few isolated exceptions, the modified 
method, represented by Eq. (4), produced significantly better results. As noted in the 
introduction, this was expected. The results for objective II were less straightforward. 

To determine the best-fitting method for objective II, the rms relative parameter 
error, obtained as in Eq. (2) and averaged over all fits, was plotted for each method 
as a function of the number of decades of data and the number of points of data per 
decade. As an example, Fig. 1 illustrates the average results for error type B. For 
only one decade of data, the curves show a slight preference for method UR. 
However, for more than one decade, the relative methods rapidly become 
significantly worse than methods U and M and, therefore, are not shown for the other 
decades. From one to three decades, method M is the best, but at three decades, the 
curves of U and M cross. Thereafter, method U is best. By 10 decades, the error of 
method M is about five times that of method U. 

The precise location of the crossing of the curves is necessarily uncertain in itself 
because of the statistical nature of the study. To measure the significance of the 
separation of two curves, the 95 % confidence limit for the.value of 6 for each ideal 
parameter pair was determined on the basis of the 100 replications of the experiment. 
The largest of these, for all the parameter values, was used for the error bars in 
Fig. 1. 
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Fig. 1. Mean rms relative parameter error [see Eq. (2)] as a function of the range and density of 
data for error type B, illustrating the procedure for determining the best !east-squares method for 
obtaining the best parameter values. 

Following this procedure for each of the five types of error, the overall results are 
illustrated by Fig. 2, with one exception, which is detailed in Table 2. The ~~rneri~~~ 
values of Fig 2 were obtained for the case (sgn ar, sgn a,) = (-, +), and the values 
were scaled to represent in each case an average experimental error of about IO %. 
Since there were quantitative variations among the four combinations of (sgn a, Y 
sgn CL*), Fig. 2 is intended only to illustrate the relative importance of different ranges 
and densities of data and as a comparison of the different error types. The table inset 
of Fig. 2 gives the qualitative results which were the same for all cases of (sgn a,, 
sgn 4. 

As suggested in Section 2, method U was always optimal for error type A and 
objective II. Additionally, method U was always the best method for objective II 
applied to error types C and E. For error types B and D, the best method varied with 
the number of decades, as indicated in the figure. 
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FIG. 2. The best curves of the mean rms relative parameter error [see Eq. (2)] as a function of the 
range and density data for error types A through E. The average standard deviation of the normally 
distributed input error is 0.10. The numbers beside the curves denote values of N = number of decades of 
data. The methods U, M, UR, and MR are specified by Eqs. (3)-(6). The table inset identifies the 
method of fit as determined by the procedure of Fig. 1. 

TABLE 2 

For Error Type D and Objective II, the Best Least-Squares Method 
Showed a Variation with (sgn a,, sgn a,), as Given Here” 

(sgn aI9 sgn 4 5 dec. 6 dec. I dec. 

(-a +I M U U 
(+, -1 M M MU 
t-9 -1 M u U 
(+ +I U U U 

a These cases had nonoverlapping error bars except for (+, -) at seven decades of data. In the latter 
case, the curves crossed at a density of about five points per decade. 
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4. CONCLUSION 

The present statistical examination of four linear least-squares methods of fitting 
the exponential model exp(A r + A,x) to experimental data has the ~~~~Qw~~~ 

conclusions. (I) The best smooth curve through the given data is almost always given 
by the well-known technique of using a modified weight factor. (2) The best values of 
A, and A,, as determined by Eqs. (3~(6), frequently do not produce the smallest 
standard error when Eq. (1) is subsequently used for its evaluation. (3) The range an 
density of data and the type of error determine a statistically best linear method for 
evaluating A, and A 2, (4) Increasing the range of data is generally more effective for 
improving the parameter values than is increasing the density of data. 

ACKNOWLEDGMENTS 

The author expresses his thanks to Dr. R. A. Forman for his stimulating interest in the experimen-. 
talist’s view of this problem and to Dr. K. R. Eberhardt for his useful comments on the tbeoretica! 
statistical view of the problem. 

REFERENCES 

1. J. MANDEL, “Statistical Analysis of Experimental Data,” interscience, New York, 1964. 
2. P. R. BEVINGTON, “Data Reduction and Error Analysis for the Physical Sciences,” McGraw-Hi!l, 

New York, 1969. 
3. I. S. SOKOLNIKOFF AND R. M. REDHEFFER, “Mathematics of Physics and Engineering,” 

McGraw-Hill, New York, 1966. 
4. S. L. MEYER, “Data Analysis for Scientists and Engineers,” Wiley, New York, 1975. 
5. J. W. TUKEY, “Exploratory Data Analysis,” Addition-Wesley, Reading, Mass., 1971. 
6. F. A. GRAYBILL, “Theory and Application of the Linear Modef,” Duxbury Press, North Sciruate, 

Mass., 1976. 


